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Continuous Functions

The concept of a continuous function is very important in analysis. Almost every elementary
functions are continuous. In fact, continuity of a function is crucial for us to ”draw” its graph.

Definition (c.f. Definition 5.1.1 & 5.1.5). Let A ⊆ R and f : A → R be a function. f is
said to be continuous at c ∈ A if for every ε > 0, there exists δ > 0 such that

|f(x)− f(c)| < ε, whenever |x− c| < δ and x ∈ A.

Moreover, f is said to be continuous on A if f is continuous at every c ∈ A.

Remark. Compare it to the definition of limit of functions. They are very similar, be careful
about the condition on the point c.

• For limit, c is required to be a cluster point of A but c need not lies in A.

• For continuity, c is required to lie in A but c need not be a cluster point of A.

Hence if c is a cluster point in A. Then f is continuous at c if and only if

f(c) = lim
x→c

f(x).

Sequential Criterion for Continuity (c.f. 5.1.3). A function f : A→ R is continuous at
the point c ∈ A if and only if for every sequence (xn) in A that converges to c, the sequence
(f(xn)) converges to f(c).

Disontinuity Criterion (c.f. 5.1.4). Let A ⊆ R, let f : A → R, and let c ∈ A. Then f is
discontinuous at c if and only if there exists a sequence (xn) in A such that (xn) converges
to c, but the sequence (f(xn)) does not converge to f(c).

Exercise. Prove one of these theorems (they are equivalent).

Remark. Since c may not be a cluster point of A, you cannot directly apply the Sequen-
tial Criterion for Limits of Functions or the Divergence Criteria for Limits of
Functions, but the proofs are similar.

Example 1. Consider A = N, then any functions f : N→ R is continuous.

Proof. Let c ∈ N and ε > 0. Take δ = 1. Then whenever |x − c| < δ = 1 and x ∈ N, it
implies that x = c. Hence

|f(x)− f(c)| = 0 < ε.

Since ε > 0 is arbitrary, it follows that f is continuous at c. Since c ∈ N is arbitrary, it
follows that f is continuous on N.

Exercise. Let A ⊆ R be a finite set. Show that any functions f : A→ R is continuous.
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Example 2 (c.f. Example 5.1.6(a)-(e)). Most of the elementary functions we learn are
continuous on their maximum domains of definition, the following are a few examples:

(a) The constant function f1(x) = b.

(b) The identity map f2(x) = x.

(c) The square function f3(x) = x2.

(d) The reciprocal function f4(x) = 1/x.

Proof. Let’s show that f4 is continuous on R \ {0}. Note that for any x, c 6= 0,

|f4(x)− f4(c)| =
∣∣∣∣1x − 1

c

∣∣∣∣ =
1

|x||c|
|x− c|.

If c > 0, note that if |x− c| < 1
2
c, then 0 < 1

2
c < x < 3

2
c. In this case,

1

|x||c|
|x− c| = 1

cx
|x− c| < 2

c2
|x− c|.

Let ε > 0. Take δ = min{1
2
c, c

2

2
ε}. Then whenever |x− c| < δ,

|f4(x)− f4(c)| =
1

|x||c|
|x− c| < 2

c2
|x− c| < 2

c2
δ ≤ ε.

Exercise. Do the case for c < 0.

Example 3 (c.f. Example 5.2.3(c)). The sine function is continuous on R.

Proof. We will use the fact that | sin z| ≤ |z| for all z ∈ R. Notice that for any x, c ∈ R,

| sinx− sin c| = 2

∣∣∣∣cos

(
x+ c

2

)∣∣∣∣ ∣∣∣∣sin(x− c2

)∣∣∣∣ ≤ |x− c|.
Let c ∈ R and ε > 0. Take δ = ε > 0. then whenever |x− c| < δ,

| sinx− sin c| ≤ |x− c| < δ = ε.

The result follows.

Exercise. Show that the cosine function is continuous on R.

Example 4 (c.f. Example 5.1.6(g)). Consider the Dirichlet’s function h : R→ R defined by

h(x) =

{
1 if x ∈ Q,
0 if x /∈ Q.

Then h is not continuous at every point c ∈ R.

Proof. Suppose c ∈ Q. We apply the Discontinuity Criterion. By the density of R \Q in
R, there is a sequence (xn) of irrational numbers that converges to c. Hence h(xn) = 0 for
all n ∈ N. Therefore

lim
n→∞

h(xn) = 1 6= 0 = h(c).

It follows that h is discontinuous at c.

Exercise. Do the case for c ∈ R \Q.
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Example 5 (c.f. Section 5.1, Ex.7). Let f : R → R be continuous at c and let f(c) > 0.
Show that there is a δ > 0 such that f(x) > 0 whenever x ∈ (c− δ, c+ δ).

Remark. Geometrically, it means that if a continuous function f takes a positive value at
c, then f is positive on a neighbourhood of c.

Solution. Take ε = f(c)/2 > 0. Since f is continuous at c, there exists δ > 0 such that

|f(x)− f(c)| < ε =
f(c)

2
, whenever |x− c| < δ.

Hence if x ∈ (c− δ, c+ δ), i.e., |x− c| < δ,

0 <
1

2
f(c) < f(x) <

3

2
f(c).

In particular, f(x) > 0.

Example 6 (c.f. Section 5.2, Ex.8). Let f, g be continuous from R to R, and suppose that
f(r) = g(r) for all rational numbers r. Is it true that f(x) = g(x) for all x ∈ R?

Solution. The answer to this question is positive. By considering the continuous function
f−g, we can assume g is the zero function. It remains to show that if f(r) = 0 for all r ∈ Q,
then f(x) = 0 for all x ∈ R.
Suppose on a contrary that f(x) 6= 0 for some x ∈ R. If f(x) > 0, the previous example
yields δ > 0 such that

f(y) > 0, whenever y ∈ (x− δ, x+ δ).

By the density of Q in R, we can find some rational number r ∈ (x−δ, x+δ). It follows that
0 = f(r) > 0, which is a contradiction. Similarly, we can find a contradiction if f(x) < 0. It
follows that f(x) = 0 for all x ∈ R.

Exercise. Prove the same result by using the Sequential Criterion for Continuity.
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